Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain.

نویسندگان

  • Laurent Huck
  • Anne Scherrer
  • Lionel Terzi
  • Arthur E Johnson
  • Harris D Bernstein
  • Stephen Cusack
  • Oliver Weichenrieder
  • Katharina Strub
چکیده

Proper folding of the RNA is an essential step in the assembly of functional ribonucleoprotein complexes. We examined the role of conserved base pairs formed between two distant loops in the Alu portion of the mammalian signal recognition particle RNA (SRP RNA) in SRP assembly and functions. Mutations disrupting base pairing interfere with folding of the Alu portion of the SRP RNA as monitored by probing the RNA structure and the binding of the protein SRP9/14. Complementary mutations rescue the defect establishing a role of the tertiary loop-loop interaction in RNA folding. The same mutations in the Alu domain have no major effect on binding of proteins to the S domain suggesting that the S domain can fold independently. Once assembled into a complete SRP, even particles that contain mutant RNA are active in arresting nascent chain elongation and translocation into microsomes, and, therefore, tertiary base pairing does not appear to be essential for these activities. Our results suggest a model in which the loop-loop interaction and binding of the protein SRP9/14 play an important role in the early steps of SRP RNA folding and assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation.

The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present th...

متن کامل

Control of box C/D snoRNP assembly by N6‐methylation of adenine

N6-methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N6-methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of th...

متن کامل

Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.

The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membra...

متن کامل

Structure of the complete bacterial SRP Alu domain

The Alu domain of the signal recognition particle (SRP) arrests protein biosynthesis by competition with elongation factor binding on the ribosome. The mammalian Alu domain is a protein-RNA complex, while prokaryotic Alu domains are protein-free with significant extensions of the RNA. Here we report the crystal structure of the complete Alu domain of Bacillus subtilis SRP RNA at 2.5 Å resolutio...

متن کامل

Control of box C/D snoRNP assembly by N-methylation of adenine

N-methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N-methyladenine at a key trans Hoogsteen-sugar A G base pair, of which half are methylated in vivo. The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 16  شماره 

صفحات  -

تاریخ انتشار 2004